Copied to
clipboard

G = C5×C24⋊C22order 320 = 26·5

Direct product of C5 and C24⋊C22

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×C24⋊C22, C10.1702+ 1+4, C245(C2×C10), C22≀C28C10, (C4×C20)⋊46C22, C4212(C2×C10), C4.4D415C10, (C23×C10)⋊5C22, (Q8×C10)⋊31C22, (C2×C10).381C24, (C2×C20).682C23, (D4×C10).223C22, C23.24(C22×C10), C22.55(C23×C10), C2.22(C5×2+ 1+4), (C22×C10).107C23, (C2×Q8)⋊6(C2×C10), C22⋊C48(C2×C10), (C5×C22≀C2)⋊18C2, (C2×D4).36(C2×C10), (C5×C4.4D4)⋊35C2, (C5×C22⋊C4)⋊43C22, (C2×C4).41(C22×C10), SmallGroup(320,1563)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C24⋊C22
C1C2C22C2×C10C2×C20Q8×C10C5×C4.4D4 — C5×C24⋊C22
C1C22 — C5×C24⋊C22
C1C2×C10 — C5×C24⋊C22

Generators and relations for C5×C24⋊C22
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, fbf=be=eb, gbg=bde, gcg=cd=dc, ce=ec, fcf=cde, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 506 in 260 conjugacy classes, 142 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, D4, Q8, C23, C23, C10, C10, C42, C22⋊C4, C2×D4, C2×Q8, C24, C20, C2×C10, C2×C10, C22≀C2, C4.4D4, C2×C20, C5×D4, C5×Q8, C22×C10, C22×C10, C24⋊C22, C4×C20, C5×C22⋊C4, D4×C10, Q8×C10, C23×C10, C5×C22≀C2, C5×C4.4D4, C5×C24⋊C22
Quotients: C1, C2, C22, C5, C23, C10, C24, C2×C10, 2+ 1+4, C22×C10, C24⋊C22, C23×C10, C5×2+ 1+4, C5×C24⋊C22

Smallest permutation representation of C5×C24⋊C22
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 36)(7 37)(8 38)(9 39)(10 40)(11 51)(12 52)(13 53)(14 54)(15 55)(16 46)(17 47)(18 48)(19 49)(20 50)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(41 76)(42 77)(43 78)(44 79)(45 80)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 36)(22 37)(23 38)(24 39)(25 40)(26 51)(27 52)(28 53)(29 54)(30 55)(31 46)(32 47)(33 48)(34 49)(35 50)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 16)(7 17)(8 18)(9 19)(10 20)(11 76)(12 77)(13 78)(14 79)(15 80)(21 31)(22 32)(23 33)(24 34)(25 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 76)(7 77)(8 78)(9 79)(10 80)(11 16)(12 17)(13 18)(14 19)(15 20)(26 31)(27 32)(28 33)(29 34)(30 35)(36 41)(37 42)(38 43)(39 44)(40 45)(46 51)(47 52)(48 53)(49 54)(50 55)(56 61)(57 62)(58 63)(59 64)(60 65)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 11)(7 12)(8 13)(9 14)(10 15)(16 76)(17 77)(18 78)(19 79)(20 80)(26 31)(27 32)(28 33)(29 34)(30 35)(36 46)(37 47)(38 48)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)
(1 21)(2 22)(3 23)(4 24)(5 25)(26 31)(27 32)(28 33)(29 34)(30 35)(36 51)(37 52)(38 53)(39 54)(40 55)(41 46)(42 47)(43 48)(44 49)(45 50)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(63 73)(64 74)(65 75)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,56)(2,57)(3,58)(4,59)(5,60)(6,36)(7,37)(8,38)(9,39)(10,40)(11,51)(12,52)(13,53)(14,54)(15,55)(16,46)(17,47)(18,48)(19,49)(20,50)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(41,76)(42,77)(43,78)(44,79)(45,80), (1,41)(2,42)(3,43)(4,44)(5,45)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,36)(22,37)(23,38)(24,39)(25,40)(26,51)(27,52)(28,53)(29,54)(30,55)(31,46)(32,47)(33,48)(34,49)(35,50)(56,76)(57,77)(58,78)(59,79)(60,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55), (1,21)(2,22)(3,23)(4,24)(5,25)(26,31)(27,32)(28,33)(29,34)(30,35)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,56)(2,57)(3,58)(4,59)(5,60)(6,36)(7,37)(8,38)(9,39)(10,40)(11,51)(12,52)(13,53)(14,54)(15,55)(16,46)(17,47)(18,48)(19,49)(20,50)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(41,76)(42,77)(43,78)(44,79)(45,80), (1,41)(2,42)(3,43)(4,44)(5,45)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,36)(22,37)(23,38)(24,39)(25,40)(26,51)(27,52)(28,53)(29,54)(30,55)(31,46)(32,47)(33,48)(34,49)(35,50)(56,76)(57,77)(58,78)(59,79)(60,80), (1,26)(2,27)(3,28)(4,29)(5,30)(6,16)(7,17)(8,18)(9,19)(10,20)(11,76)(12,77)(13,78)(14,79)(15,80)(21,31)(22,32)(23,33)(24,34)(25,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,76)(7,77)(8,78)(9,79)(10,80)(11,16)(12,17)(13,18)(14,19)(15,20)(26,31)(27,32)(28,33)(29,34)(30,35)(36,41)(37,42)(38,43)(39,44)(40,45)(46,51)(47,52)(48,53)(49,54)(50,55)(56,61)(57,62)(58,63)(59,64)(60,65)(66,71)(67,72)(68,73)(69,74)(70,75), (1,21)(2,22)(3,23)(4,24)(5,25)(6,11)(7,12)(8,13)(9,14)(10,15)(16,76)(17,77)(18,78)(19,79)(20,80)(26,31)(27,32)(28,33)(29,34)(30,35)(36,46)(37,47)(38,48)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55), (1,21)(2,22)(3,23)(4,24)(5,25)(26,31)(27,32)(28,33)(29,34)(30,35)(36,51)(37,52)(38,53)(39,54)(40,55)(41,46)(42,47)(43,48)(44,49)(45,50)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(63,73)(64,74)(65,75) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,36),(7,37),(8,38),(9,39),(10,40),(11,51),(12,52),(13,53),(14,54),(15,55),(16,46),(17,47),(18,48),(19,49),(20,50),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(41,76),(42,77),(43,78),(44,79),(45,80)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,36),(22,37),(23,38),(24,39),(25,40),(26,51),(27,52),(28,53),(29,54),(30,55),(31,46),(32,47),(33,48),(34,49),(35,50),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,16),(7,17),(8,18),(9,19),(10,20),(11,76),(12,77),(13,78),(14,79),(15,80),(21,31),(22,32),(23,33),(24,34),(25,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,76),(7,77),(8,78),(9,79),(10,80),(11,16),(12,17),(13,18),(14,19),(15,20),(26,31),(27,32),(28,33),(29,34),(30,35),(36,41),(37,42),(38,43),(39,44),(40,45),(46,51),(47,52),(48,53),(49,54),(50,55),(56,61),(57,62),(58,63),(59,64),(60,65),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,11),(7,12),(8,13),(9,14),(10,15),(16,76),(17,77),(18,78),(19,79),(20,80),(26,31),(27,32),(28,33),(29,34),(30,35),(36,46),(37,47),(38,48),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55)], [(1,21),(2,22),(3,23),(4,24),(5,25),(26,31),(27,32),(28,33),(29,34),(30,35),(36,51),(37,52),(38,53),(39,54),(40,55),(41,46),(42,47),(43,48),(44,49),(45,50),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(63,73),(64,74),(65,75)]])

95 conjugacy classes

class 1 2A2B2C2D···2I4A···4I5A5B5C5D10A···10L10M···10AJ20A···20AJ
order12222···24···4555510···1010···1020···20
size11114···44···411111···14···44···4

95 irreducible representations

dim11111144
type++++
imageC1C2C2C5C10C102+ 1+4C5×2+ 1+4
kernelC5×C24⋊C22C5×C22≀C2C5×C4.4D4C24⋊C22C22≀C2C4.4D4C10C2
# reps16942436312

Matrix representation of C5×C24⋊C22 in GL8(𝔽41)

10000000
01000000
00100000
00010000
000018000
000001800
000000180
000000018
,
4003900000
004010000
00100000
01100000
00000010
000000040
00001000
000004000
,
139000000
040000000
01010000
01100000
000004000
000040000
00000001
00000010
,
400000000
040000000
004000000
000400000
000040000
000004000
000000400
000000040
,
10000000
01000000
00100000
00010000
000040000
000004000
000000400
000000040
,
10000000
140000000
00100000
4000400000
000040000
000004000
00000010
00000001
,
10000000
140000000
4004000000
00010000
000040000
00000100
000000400
00000001

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,0,0,0,0,18],[40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,39,40,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0],[1,0,0,0,0,0,0,0,39,40,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,1,0,40,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,1,40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1] >;

C5×C24⋊C22 in GAP, Magma, Sage, TeX

C_5\times C_2^4\rtimes C_2^2
% in TeX

G:=Group("C5xC2^4:C2^2");
// GroupNames label

G:=SmallGroup(320,1563);
// by ID

G=gap.SmallGroup(320,1563);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,568,3446,2571,6947,1242]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*b*f=b*e=e*b,g*b*g=b*d*e,g*c*g=c*d=d*c,c*e=e*c,f*c*f=c*d*e,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽